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The present work uses a reduced-order model to study the motion of a buoyant vortex
ring with non-negligible core size. Buoyancy is considered in both non-Boussinesq
and Boussinesq situations using an axisymmetric contour dynamics formulation. The
density of the vortex ring differs from that of the ambient fluid, and both densities
are constant and conserved. The motion of the ring is calculated by following the
boundary of the vortex core, which is also the interface between the two densities.
The velocity of the contour comes from a combination of a specific continuous
vorticity distribution within its core and a vortex sheet on the core boundary. An
evolution equation for the vortex sheet is derived from the Euler equation, which
simplifies considerably in the Boussinesq limit. Numerical solutions for the coupled
integro-differential equations are obtained. The dynamics of the vortex sheet and the
formation of two possible singularities, including singularities in the curvature and
the shock-like profile of the vortex sheet strength, are discussed. Three dimensionless
groups, the Atwood, Froude and Weber numbers, are introduced to measure the
importance of physical effects acting on the motion of a buoyant vortex ring.

Key words: contour dynamics, vortex dynamics

1. Introduction

Vortex rings have attracted much attention from applied mathematicians and fluid
dynamicists over the history of vortex dynamics. Early studies can be traced back to
the work of Kelvin (1867) and Hicks (1884). Their theories for the steady motion of
a vortex ring assumed that the core is small and circular. The vortex core refers to
the region enclosed by a contour shown in figure 1. The area of that region allows us
to define a vortex core radius a. If a is very small compared to the radius of the
vortex ring about its axis of symmetry, we define it as a thin ring; otherwise the
ring is ‘fat’. A detailed description of the profile of the vortical core was missing
until Fraenkel (1972) provided an asymptotic formulation for small cross-section rings.
Norbury (1972) found steady ‘fat’ vortex rings close to the Hill’s spherical vortex.
Norbury (1973) then connected the previous two solutions via a one-parameter family
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FIGURE 1. A schematic illustration of the contour in an axisymmetric domain; ωφ and γ
are positive into the plane. The parameterisation ξ goes clockwise.

of steady vortex rings ranging from thin to fat rings. This solution has an azimuthal
vorticity distribution inside the ring given by

ωφ = rΩ, (1.1)

where r is the radial distance to the axis of symmetry and Ω is constant. Then ωφ
satisfies the vorticity equation in axisymmetric geometry,

D

Dt

(ωφ
r

)
= 0, (1.2)

where D/Dt is the material derivative. We are using cylindrical coordinates (r, φ, z).
In general, classic vortex dynamics deals with incompressible, inviscid Euler

flows. The flows are dominated by vorticity and the fluid density is set constant
throughout. Shariff, Leonard & Ferziger (1989) provides a comprehensive review of
vortex rings, while Shariff & Leonard (1992) has a clear discussion of the formation,
dynamics, interactions and the stability of vortex rings. In many circumstances, e.g. in
geophysical and environmental settings, fluid flows are not only governed by vorticity
but also by other physical effects. The additional physics we want to address here is
buoyancy, the combined effect of density difference and gravity. Well-known examples
of buoyant vortices are the bubble rings created and manipulated by dolphins (see
Marten et al. 1996), which might be important to understand animal behaviour. One
can also observe bubble rings created by human divers in the ocean or a swimming
pool. A smoke ring can be created from a fireball or a thermal plume, and smoke
rings expelled from a volcano have also been observed (Velasco Fuentes 2014).
From a fluid dynamics perspective, the first study of buoyant vortex rings was the
theoretical work and laboratory observations of Turner (1957). The theoretical study
of Pedley (1968) confirmed Turner’s finding of the expansion of a buoyant vortex ring
in inviscid flows and predicted finite lifetimes for bubble rings. Chang & Llewellyn
Smith (2018) calculated the motion of thin buoyant vortex filaments including a
buoyant ring with a small inclination. However, these results are for thin vortex rings
whose core size is much smaller than their radius.

Buoyant vortex rings with large cores have been studied theoretically and
numerically by Lundgren & Mansour (1991) and Chen et al. (1999). Their calculations
start from a spherical bubble rising due to buoyancy. The bubble is penetrated by
the surrounding fluid from its bottom because of the gradient of hydrostatic pressure
and then changes its topology to a bubble ring. Lundgren & Mansour (1991) used
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a boundary-integral method based on potential theory to calculate the motion of
bubbles before and after they turned into rings. A model equation similar to that in
Turner (1957) and Pedley (1968) was used when the vortex ring became very thin at
later times. Chen et al. (1999) used the incompressible Navier–Stokes equations to
calculate the transition from a spherical bubble to a bubble ring numerically. Another
numerical study by Cheng, Lou & Lim (2013) carried out three-dimensional direct
numerical simulations (DNS) that showed that a bubble ring is eventually destroyed
by instability. The recent experimental studies of Vasel-Be-Hagh, Carriveau & Ting
(2015a) and Vasel-Be-Hagh et al. (2015b) investigate the formation and the dynamics
of bubble rings along with the viscous drag acting on a buoyant vortex ring.

Here, we use a contour dynamics method in axisymmetric geometry to study
buoyant vortex rings. Contour dynamics was first used by Zabusky, Hughes & Roberts
(1979) to calculate the nonlinear evolution of a vortex patch in two dimensions. It
was later adapted to axisymmetry in Pozrikidis (1986) and Shariff et al. (1989); see
also Riley (1998) and Shariff, Leonard & Ferziger (2008). A detailed description
and numerical techniques of the method can be found in Dritschel (1989) and in the
review of Pullin (1992). Blyth, Rodriguez-Rodriguez & Salman (2014) showed that
buoyancy enters the vorticity equation through the baroclinic term. To take account
of buoyancy, we assign constant densities ρ1, ρ2 to the surrounding fluid and the
vortex ring, respectively. The density gradient becomes a Dirac delta function on the
interface and the baroclinic torque is zero everywhere except on the interface. As a
result, vorticity is generated on the interface and forms a vortex sheet. An evolution
equation for the vortex sheet is essential for buoyancy to be included into the contour
dynamics formulation. Other additional physics, such as a magnetic force (see Hattori
& Moffatt 2006; Llewellyn Smith & Hattori 2012), also enters in the form of a vortex
sheet. A review of contour dynamics method with additional physics can be found
in Llewellyn Smith et al. (2018). The evolution equation for vortex sheet strength
between different density fluids can be found in Baker, Meiron & Orszag (1982) and
Baker & Xie (2011) for two-dimensional free-surface waves. A similar formulation
was used with gravity absent in Sohn & Hwang (2005) and Shin, Sohn & Hwang
(2018) for two-density flows. Tryggvason (1988) and Stock, Dahm & Tryggvason
(2008) derived an evolution equation for a vortex sheet to investigate the problems
of Rayleigh–Taylor instability and the interaction between vortices and a density
interface.

Surface tension can also be important in the dynamics of buoyant vortex rings, and
the vortex sheet equation will contain a term representing surface tension. Studies
including surface tension in the vortex sheet dynamics are Baker & Nachbin (1998),
Shin, Sohn & Hwang (2014), Sohn (2015) and Shin et al. (2018). Most studies solve
two-dimensional problems and with an initially straight line or a slightly perturbed
vortex sheet, although Baker & Moore (1989) and Sohn (2015) study a circular vortex
sheet in two dimensions.

In this paper, calculations for a vortex sheet in axisymmetry are carried out. In § 2,
we introduce axisymmetric contour dynamics and derive an evolution equation for
the vortex sheet on the interface using the Euler equation. The relevant dimensionless
numbers in this problem are also discussed. In § 3, we present our numerical
approaches for solving the coupled integro-differential equations in an axisymmetric
domain. Numerical results are presented in § 4. We conclude in § 5.

2. Mathematical formulation

We consider a buoyant vortex ring in an ideal fluid. The governing equations are

∇ · u = 0, (2.1)
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887 A28-4 C. Chang and S. G. Llewellyn Smith

ρ
Du

Dt
= −∇p + ρg. (2.2)

The cross-section of a vortex ring core forms a confined region in the r–z plane
(see figure 1) and the vorticity is zero everywhere except inside or on this contour.
The contour is material and represented by a parameterised curve R. Its evolution
determines the motion of the axisymmetric vortex ring. The flow is axisymmetric
without swirl, so the velocity field and the vorticity field are u = (ur, 0, uz) and
ω = (0, ωφ,0), respectively. We can calculate the motion by evolving the contour using

dR

dt
= u, (2.3)

where the velocity is

ur = −1

r

∂ψ

∂z
, uz = 1

r

∂ψ

∂r
. (2.4a,b)

The Stokes streamfunction is given by

ψ(r, z, t)=
∫∫

ωφ(r
′, z′, t)G(r, z|r′, z′) dr′ dz′, (2.5)

and satisfies the equation

1

r

(
∂2

∂r2
− 1

r

∂

∂r
+ ∂2

∂z2

)
ψ = −ωφ. (2.6)

This differential equation is solved using the Green’s function

G(r, z|r′, z′)=
√

rr′

2π

[(
2

k
− k

)
K(k)− 2

k
E(k)

]
, (2.7)

where

k2 = 4rr′

(r + r′)2 + (z − z′)2
. (2.8)

Here, K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively. The double integral in (2.5) is transformed into a contour integral using
Green’s theorem and the velocity field in (2.4) is obtained. The velocity on the
boundary is then evaluated and the contour is evolved in time. This technique is
called contour dynamics. More details of contour dynamics calculation for vortex
rings can be found in Pozrikidis (1986), Shariff et al. (1989), Riley (1998) and
Shariff et al. (2008).

If a vortex sheet is present on the interface, the velocity will consist of contributions
from both the vortex sheet on the interface and the continuous vorticity inside. The
latter is referred to as a vortex patch. For a classic vortex ring with one density
throughout the flow, there is only a vortex patch. Riley (1998) gives a good discussion
of axisymmetric vortex patches. The continuous vorticity distribution is taken to be
ωφ = rΩ , where Ω is a constant (see § 1). Using Green’s theorem gives the contour
integrals

up(r, z)= Ω

r

∮
G cos θ ′r′ ds′ r̂ +Ω

∮
[H cos θ ′(z′ − z)− G sin θ ′] ds′ ẑ, (2.9)
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Axisymmetric contour dynamics for buoyant vortex rings 887 A28-5

where s is the arclength and θ(r, z) is the angle between the outward normal to the
interface and the unit vector in z (see figure 1). All variables with primes in the
integral are functions of (r′, z′). The function G is given in (2.7), while

H(r, z|r′, z′)= r′K(k)

π

√
(r + r′)2 + (z − z′)2

. (2.10)

For the vortex sheet, carrying out the integral in (2.5) along the interface and using
(2.4) gives the self-induced velocity of a vortex sheet with strength γ as (see Hattori
& Moffatt 2006)

us(r, z)= −1

r

∮
∂G

∂z
γ ′ dξ ′ r̂ + 1

r

∮
∂G

∂r
γ ′ dξ ′ ẑ, (2.11)

where ξ is a parameterisation without any specific physical significance that increases
clockwise along the contour (see figure 1). The contour is evolved using u = up + us

in (2.3).

2.1. The non-Boussinesq case

For a vortex ring whose density differs from that of the environment, the density jump
on the interface results in baroclinic generation of vorticity. Baroclinic torque creates a
vortex sheet on the interface. In axisymmetric geometry, the vortex sheet is composed
of vorticity perpendicular to the r–z plane, i.e. in the azimuthal direction. The interface
can be written as a closed curve R = (R(ξ , t),Z(ξ , t)), where ξ is the parameterisation
introduced earlier. The local tangent and normal vectors are

t = ∂R

∂ξ

∣∣∣∣
∂R

∂ξ

∣∣∣∣
−1

, n = ∂t

∂s
κ−1, (2.12a,b)

where κ is the curvature, s is arclength and

∂s

∂ξ
=
∣∣∣∣
∂R

∂ξ

∣∣∣∣= L, (2.13)

is the arclength metric. The normal vector points out of the vortex.
On either side of the interface, the densities are ρ1 and ρ2, where the subscripts 1

and 2 indicate outside and inside. The corresponding velocities are u1, u2 and the
vortex sheet strength is defined by γ = L(u1 − u2) · t. The tangential velocity on
the interface is given by averaging velocities from either side, ū = (u1 + u2)/2. A
Lagrangian velocity following material points is defined by

ũ = ū + α
γ

2L
t. (2.14)

For α = 1 or −1, the material points follow the motion of outside or inside fluid,
respectively (see Baker et al. 1982). Then velocities on either side of the interface
are

u1 = ū + γ

2L
t = ũ + (1 − α)

γ

2L
t, u2 = ū − γ

2L
t = ũ − (1 + α)

γ

2L
t. (2.15a,b)
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Evaluating the Euler equation on both sides gives

∂u1

∂t
+ (u1 · ∇)u1 = − 1

ρ1

∇p + g, (2.16)

∂u2

∂t
+ (u2 · ∇)u2 = − 1

ρ2

∇p + g. (2.17)

We follow the procedure in Baker et al. (1982) to eliminate pressure. We first subtract
(2.17) from (2.16) and replace u1 and u2 in the advection term by ũ from (2.15),
giving

d

dt

(γ
L

t

)
+ γ

L
t · ∇ũ − α

γ

L
t · ∇

(γ
L

t

)
= −

(
1

ρ1

− 1

ρ2

)
∇p. (2.18)

A material derivative following Lagrangian points is defined as

d

dt
= ∂

∂t
+ (ũ · ∇). (2.19)

Similarly, adding (2.16) and (2.17) together, and replacing u1 and u2 by ũ and ū gives

2
dū

dt
− α

γ

L
t · ∇ū + γ

2L
t · ∇

(γ
L

t

)
= −

(
1

ρ2

+ 1

ρ1

)
∇p + 2g. (2.20)

The ratio between the coefficients of the pressure gradient in (2.18) and (2.20) is the
Atwood number

A = ρ1 − ρ2

ρ1 + ρ2

. (2.21)

Eliminating the pressure yields

d

dt

(γ
L

t

)
+ γ

L
t · ∇ũ − α

γ

L
t · ∇

(γ
L

t

)
= −2A

[
dū

dt
− α

2

γ

L
t · ∇ū + γ

4L
t · ∇

(γ
L

t

)
− g

]
.

(2.22)
To simplify the equation above, it can be shown that

1

L

dL

dt
= t · [(t · ∇)ũ], t · ∇ = 1

L

∂

∂ξ
. (2.23a,b)

By projecting (2.22) on the tangential direction and using the Frenet–Serret formulas,

1

L

∂t

∂ξ
= κn,

1

L

∂n

∂ξ
= −κt, (2.24a,b)

we obtain

dγ

dt
− α

2

∂

∂ξ

(γ
L

)2

= −2AL

[
t ·

dū

dt
− α

2

γ

L2

∂ū

∂ξ
· t + 1

8

1

L

∂

∂ξ

(γ
L

)2

− t · g

]
. (2.25)

This equation agrees with equation (2.15) in Baker et al. (1982), although their
problem is two-dimensional and they use complex variables and Bernoulli’s equation.
We can match each term to their two-dimensional formulation, so the vortex sheet
dynamics is the same in two-dimensional and axisymmetric flows. In this paper, we
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Axisymmetric contour dynamics for buoyant vortex rings 887 A28-7

set α= 0, i.e. we follow material points on the mean velocity so that ũ = ū. We now
drop the tildes and bars to obtain

dγ

dt
= −2AL

[
t ·

du

dt
+ 1

8

1

L

∂

∂ξ

(γ
L

)2

− t · g

]
. (2.26)

A similar equation can also be found in Shin et al. (2018), although gravity is omitted
in their formulation.

The evolution equation for γ is coupled with (2.9) and (2.11). These equations can
be transformed into a Fredholm integral equation of the second kind for dγ /dt. Using
(2.9), (2.11) and the definition of the unit tangent, we have

t ·
du

dt
= t ·

dup

dt
+ t ·

dus

dt

= 1

R

(
−1

L

∂R

∂ξ

∮
dγ ′

dt

∂G

∂Z
dξ ′ + 1

L

∂Z

∂ξ

∮
dγ ′

dt

∂G

∂R
dξ ′

)
+ f (R, Z, γ , u),

(2.27)

where f is a function of R, Z, γ and u, provided in appendix A. The evolution
equation of dγ /dt is coupled with the Lagrangian advection equation in (2.3).

2.2. The Boussinesq limit

When the density difference across the interface is small but gravity remains important,
we may assume ρ1 ≈ ρ2 in all terms except for gravity. This is the Boussinesq
approximation. The evolution equation for γ in the Boussinesq limit is

dγ

dt
= 2ALt · g =

(
1 − ρ2

ρ̄

)
Lt · g, (2.28)

where ρ̄= (ρ1 +ρ2)/2 (other definitions are possible). In the Boussinesq approximation,
the acceleration term t · (du/dt) vanishes in the vortex sheet equation. This gives an
advantage in solving the integro-differential equations numerically, since dγ /dt is
no longer determined by a Fredholm integral function and can be integrated by
straightforward time stepping.

2.3. Surface tension

When a vortex ring consists of air or vapour inside a liquid, the pressure is
discontinuous across the interface. This dynamical jump is balanced by surface
tension Ts,

p2 − p1 = κTs, (2.29)

where κ is the curvature of the interface. Typically Ts is a constant. We can replace
the pressure in (2.16) and (2.17) by p1 and p1 + κTs, respectively, then carry out the
same calculation as in § 2.1. We obtain

dγ

dt
= −2AL

[
t ·

du

dt
+ 1

8

1

L

∂

∂ξ

(γ
L

)2

− t · g

]
+ Ts

ρ̄

∂κ

∂ξ
. (2.30)

The rate of change of the vortex sheet strength contains a contribution proportional to
the gradient of curvature along the interface when surface tension is present.
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887 A28-8 C. Chang and S. G. Llewellyn Smith

2.4. Dimensionless parameters

There are four dimensionless parameters for this problem. One is the aspect ratio of
the ring, S = a0/R0, where a0 is the initial radius of vorticity core and R0 is the
initial radius of vortex ring. Another dimensionless number can be taken as the Froude
number

Fr = Uc√
ga0

, (2.31)

where Uc is a velocity scale. We set Uc = a2
0Ω , which characterises the translation of

a homogeneous ring. The time scale is a0/Uc = 1/(a0Ω). The vortex sheet strength γ
can be scaled by a0Uc while ξ has no dimension. A dimensionless form of (2.30) is
then given by

dγ

dt
= −2AL

[
t ·

du

dt
+ 1

8

1

L

∂

∂ξ

(γ
L

)2

+ 1

Fr2
t · ẑ

]
+ 1

We

∂κ

∂ξ
, (2.32)

where gravity g = −gẑ. The last parameter in the dimensionless equation is the Weber
number,

We = ρ̄U2
c a0

Ts

. (2.33)

A special case is Ω = 0, when there is no continuous vorticity inside the vortex. We
then choose the velocity scale using Uc = √

ga0, giving Fr = 1.
We call the third term on the right-hand side of (2.32) the buoyancy or source term,

since vorticity is created by baroclinic generation. The second term on the right-hand
side is the quadratic or nonlinear term. The first term is the dynamic-coupling term,
in which the dynamics of the contour is coupled to the evolution of the sheet strength.
The last term corresponds to surface tension.

3. Numerical method

Before we start our discussion of the numerical scheme, it is worth surveying the
literature to identify similar problems that have been investigated. In table 1 we list
some references with calculations of vortex sheet evolution. The vortex sheet strength
does not evolve when density differences, body forces and surface tension all vanish.
Once density differences are introduced, the dynamic-coupled and quadratic terms in
(2.32) are non-zero. Body forces behave like a source in (2.32). The self-induced
velocity of the vortex sheet is calculated using the Biot–Savart law. If a vortex sheet
is a closed contour enclosing vorticity, the contribution from vortex patch (2.9) must
be added.

Our numerical scheme consists of four main parts: an interpolation method to
approximate the location of the contour and compute spatial derivatives, quadrature to
evaluate contour integrals, an integral equation to obtain the vortex sheet strength and
a time-stepping method to evolve the contour. The contour is discretised using a set
of Lagrangian points, i.e. material points, Xn in the r–z plane with n = 1, 2, . . . , N.
The initial contour is given by

R(ξ , 0)=R0 + a0 cos ξ, Z(ξ , 0)= a0 sin ξ, (3.1a,b)

for ξ ∈ [0, 2π); R0 is the initial radius of the ring and a0 is the radius of its core.
For small ring sizes, this is almost the steadily propagating solution of Norbury (1973).
We set R0 = 1 in all calculations. These Lagrangian points are evolved using (2.3),

dXn

dt
= un, (3.2)
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Axisymmetric contour dynamics for buoyant vortex rings 887 A28-9

Domain Density Body Surface Vortex

difference force tension patch

Baker et al. (1982) two-dimensional yes gravity no no

Krasny (1986a) two-dimensional no no no no

Baker, Caflisch &

Siegel (1993) two-dimensional yes gravity no no

Hou, Lowengrub &

Shelley (1994) two-dimensional yes gravity yes no

Baker & Nachbin (1998) two-dimensional no no yes no

Baker & Xie (2011) two-dimensional yes gravity no no

Shin et al. (2018) two-dimensional yes no yes no

Pozrikidis (1986) axisymm no no no yes

Shariff et al. (1989) axisymm no no no yes

Nitsche & Krasny (1994) axisymm no no no no

Nitsche (2001) axisymm no no no no

Hattori & Moffatt (2006) axisymm no magnetic no no

Llewellyn Smith &

Hattori (2012) axisymm no magnetic no yes

Present work axisymm yes gravity yes yes

TABLE 1. Previous studies on vortex sheet evolution compared to present work.

where un is u evaluated numerically on Xn.

3.1. Interpolation and spatial differentiation

Since the contour is a closed curve, it is natural to use a Fourier series to interpolate
between points,

R(ξ)=
N/2−1∑

k=−N/2

X̂k eikξ , (3.3)

where the X̂k are the Fourier coefficients of the Lagrangian points’ locations. Here
k =−N/2, . . . ,−1,0,1, . . . ,N/2 − 1 are the wavenumbers. The parameter ξ is equally
spaced in [0, 2π). The mth derivative along the contour is computed from the Fourier
series

R(m)(ξ)=
N/2−1∑

k=−N/2

(ik)mX̂k eikξ . (3.4)

The spatial distribution of the vortex sheet strength γn is also interpolated using
Fourier series. A Fourier filter is used to cut off the highest one third of the spectrum
to mitigate the aliasing error from the quadratic term.

f̂ (k)=
{

1, |k|6 N/3
0, |k|>N/3.

(3.5)

The aliasing error from the quadratic term can also be mitigated. A filter proposed
by Krasny (1986b) is also implemented to suppress the growth of noise due to
round-off error using a threshold of O(10−12). At every time step, filters are applied
whenever the time derivatives, u and dγ /dt, are obtained. Krasny’s filter is applied
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first, then (3.5) right after it. Once the time derivatives are filtered, (R, Z) and γ are
marched forward by one time step and the same filtering process applied to the new
(R, Z) and γ .

3.2. Quadrature rule

The velocity u for each material point is the sum of (2.9) and (2.11), in which the
contour integrals are computed numerically. The quadrature can be done using the
trapezoidal rule which gives spectral convergence for periodic functions (Trefethen &
Weideman 2014). However the functions G and H are singular as (r′, z′) → (r, z),
because the complete elliptic integral of the first kind, K(k), is unbounded when k →1.
There are several ways to remove the singularity. One way is the vortex blob method
(see Krasny 1986a): a small parameter ε is introduced into the denominator in (2.8),
giving

k2 = 4rr′

(r + r′)2 + (z − z′)2 + ε2
. (3.6)

The idea is essentially the same as the Moore–Rosenhead method (see Saffman 1992,
p. 213) to desingularise the Biot–Savart integral for vortex filaments, in which a small
parameter ε is added into denominator to avoid a division by zero. It acts to remove
scales smaller than ε. The appropriate value of ε is discussed below.

A formally exact method is to subtract the singular part of the integrand. The
regularised integral is then computed numerically using the trapezoidal rule. The
asymptotic behaviour of the singularity of (2.7) is (Pozrikidis 1986)

Gs ∼ r′

2π

ln
4√

1 − k2
. (3.7)

Shariff et al. (1989), Nitsche & Krasny (1994), Nitsche (2001), Hattori & Moffatt
(2006) and Llewellyn Smith & Hattori (2012) use this method to remove the
singularity. A local series is then integrated term by term over segments adjacent
to the singular point. Another method used in two dimensions (Baker et al. 1993;
Hou et al. 1994; Baker & Xie 2011; Shin et al. 2018) is the trapezoidal rule based
on alternative/mid points to avoid the singular point. This idea is not pursued here
(but see § 5).

While the series expansion method should formally yield higher accuracy, it suffers
from two problems. First, the function takes a different form on the segment including
the singularity which may reduce the accuracy of the trapezoidal rule. Second, it is
difficult to implement when solving the dynamic-coupled term in the vortex sheet
equation, since it requires a local approximation to dγ/dt, which is unknown. As a
result, the blob method appears to be the most natural regularisation and is the one
that was used. Nevertheless, we can examine the difference between the two. The
contours in figure 2(a) show very little difference using ε = 0.01. Some differences
can be noticed near the roll-up at t = 0.8, but the bulk motions of the two are almost
the same. That serves our purpose well enough to model the motion of a buoyant
vortex ring, even though the small scales are not perfectly resolved. We also test
different value of ε. In figure 2(b), the profiles almost overlap for ε 6 0.01, and the
maximum error of velocity profile is O(10−6). The volume is a conserved quantity
and the change in volume is 0.2 % during t = 0–0.84 with ε = 0.01. With ε = 0.05
the computation lasts for a longer time t = 0–1.09 and the change in volume is 0.6 %.
In the present study, we used ε = 0.05 in order to achieve longer integration in time.
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FIGURE 2. (a) Comparison of the blob method (solid line) and the series expansion
method (dashed line) using velocity us only, ε= 0.01; (b) a close look of velocity profile
for various ε; (c) convergence test with different core sizes a0.

The convergence test for u with respect to N uses the following approach: first we

calculate the velocity u(N/2) with grid resolution N/2, then we double the resolution to

N by adding one new point between every two existing points. The velocity is then

calculated again as u(N). We compute the change in velocity at the original points,

then take its norm as

εN = ||u(N) − u(N/2)||. (3.8)

We find εN → 0 when N → ∞, where εN is a function of N and a0 plotted in

figure 2(c). Different initial vortex core radii a0 require different values of N. If we

set εN = 10−4 as our desired accuracy, a0 = 0.2 satisfies this criterion with N = 64,

while a0 = 0.8 the required resolution rises to N = 256. Therefore, we choose N = 64

for a0 = 0.2 and N = 256 for a0 = 0.8, N = 128 for a0 = 0.4 and N = 256 for a0 = 0.6

to keep εN below 10−4. For higher accuracy, e.g. εN < 10−8, a0 = 0.2 needs resolution

N = 128 and a0 = 0.8 needs at least N = 512.
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3.3. Integral equation

To solve for γ , the rate of change of γ is calculated by solving the integral equation
given by combining (2.27) and (2.30):

dγ

dt
= −2AL

dγ

dt
+F , (3.9)

where the linear integral operator is

L
dγ

dt
= 1

R

(
−∂R

∂ξ

∮
∂G

∂Z

dγ

dt
dξ ′ + ∂Z

∂ξ

∮
∂G

∂R

dγ

dt
dξ ′

)

and F contains all the terms on the right-hand side of (2.30) except the terms in
dγ /dt. The Green function G is regularised by the blob method. The integral operator
L is discretised using the trapezoidal rule and Fi is F evaluated at Xn. Then (3.9)
becomes

dγ

dt

∣∣∣∣
i

= −2A
∑

j

Lij

dγ

dt

∣∣∣∣
j

+Fi. (3.10)

The discretised equation can be transformed into the linear system

(δij + 2ALij)
dγ

dt

∣∣∣∣
i

=Fi. (3.11)

The matrix is diagonally dominant and (3.11) can be solved by successive over-
relaxation efficiently.

3.4. Time stepping

Finally, X and γ are advanced in time using the classic four-stage Runge–Kutta
scheme

dX

dt
= 1

6

[
u(1) + 2u(2) + 2u(3) + u(4)

]
, (3.12)

where u( j) are intermediate values (e.g. see Iserles 2009, § 3.2). The time step 1t
is fixed at 0.001 in our calculations. The initial value of γ is zero. The two filters
introduced earlier are also applied to intermediate values.

4. Numerical results

We first discuss the γ -equation and its solutions. We show the possible emergence
of curvature singularities that limit the length of numerical calculations. Then we
present numerical results and discuss their dependence on the dimensionless numbers
A and Fr. Finally we quantify the motion of the ring using integral quantities.

4.1. Boussinesq vs non-Boussinesq cases

The evolution equation for γ , (2.32), is central when using axisymmetric contour
dynamics to calculate the motion of buoyant vortex rings. The first two terms on the
right-hand side of (2.32) are multiplied by the Atwood number A and represent the
contribution from density difference alone. The third term with gravity has a prefactor
A/Fr2 which measures the strength of buoyancy. We exclude surface tension for now,
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FIGURE 3. (a,b) The vortex sheet strength γ along the boundary and (c,d) the snapshots
of contours. The Atwood numbers are A = 0.01, 0.5 for (a,c) and (b,d), respectively. All
cases have Fr = 1 and We =∞. For the Boussinesq case, γ is obtained using (2.28), while
(2.26) is used for non-Boussinesq calculations.

so that We → ∞. When the density difference is small but gravity is strong, we

have A → 0 but A/Fr & 1. The problem can then be approximated by the Boussinesq

formulation. For small Atwood number, e.g. A = 0.01, the vortex sheets evolved using

(2.26) and (2.28) are almost identical (figure 3a). Profiles computed from both γ

equations are very similar, as shown in figure 3(c). Since A is small, the first two

terms in the non-Boussinesq formulation are negligible.

We increase the Atwood number to 0.5. The solutions for γ are show in figure 3(b)

and the corresponding contours in figure 3(d). The Boussinesq and non-Boussinesq

cases differ when A is sufficiently large. The contour in the Boussinesq case has

evolved into two roll ups when t = 0.6. The non-Boussinesq case is similar to the

Boussinesq calculation before t = 0.2, but then the contour starts to deform more

drastically than the Boussinesq case when t > 0.2. The non-Boussinesq calculation

stops around t = 0.3 when the contour develops a sharp tip near (0.92, 0.36) in

figure 3(d) at which point the Fourier spectrum has saturated (see below), but before

any roll ups appear. The roll ups are associated with the formation of finite-time
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FIGURE 4. Curvature along the contour for A = 0.3 and 0.5. The height of the spike
increases as A increases.

singularity in curvature which has been found in many other studies on vortex sheet
calculations.

4.2. Singularities and vortex sheet dynamics for moderate A

We plot the curvature of vortex sheets in the non-Boussinesq case for A = 0.3, 0.5
in figure 4. The formation of a spike in each case is apparent. This could indicate a
finite-time curvature singularity as seen in the literature. The formation of curvature
singularities of a vortex sheet was studied by Moore (1979). These singularities can
be observed physically when singularities in the complex plane reach the real axis.
Meiron, Baker & Orszag (1982) and Krasny (1986b) numerically confirmed Moore’s
asymptotic result. Cowley, Baker & Tanveer (1999) showed how singularities move
in the complex plane and reach the real axis in finite time. Krasny (1986b) studied
the formation of these singularities using the point–vortex approach, while Krasny
(1986b) and Cowley et al. (1999) identified the singularity as having a 3

2
-power form.

Baker et al. (1993) applied a vortex sheet model to the Rayleigh–Taylor instability
problem, and showed that singularities do not reach the real axis in finite time if
one layer of fluid has zero density (i.e. A = 1). These investigations considered two-
dimensional periodic problems. The present calculation is axisymmetric, but the same
kind of curvature singularity is possible. The nature of these singularities is worthy of
a more detailed study, but that lies beyond the scope of this work as our intention is to
calculate the motion of buoyant vortex rings. The reason we discuss singularities here
is to point out that such a spike will cause a numerical blow-up in our calculations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

26
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 A
cc

es
s 

pa
id

 b
y 

th
e 

U
C 

Sa
n 

D
ie

go
 L

ib
ra

ry
, o

n 
24

 F
eb

 2
02

0 
at

 1
7:

26
:0

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



Axisymmetric contour dynamics for buoyant vortex rings 887 A28-15

0 20

10-10

100

40 60 80

|k|

100 120 140

�
F

T
{d

©
/
d

t}
�

Non-Boussinesq

0 20

10-10

100

40 60 80 100 120 140

�
F

T
{d

©
/
d

t}
�

Boussinesq

t = 0

t = 0.1

t = 0.2

t = 0.3

t = 0.4

t = 0.5

t = 0.6

FIGURE 5. Fourier spectra of dγ /dt for Boussinesq and non-Boussinesq calculations for
A = 0.5, Fr = 1 and We = ∞, shown in figure 3(b,d). The calculations were stopped when
the Fourier coefficient of highest mode becomes ' O(1).

Even though our blob method may not allow actual singularity formation, the resulting
growth in curvature appears strong enough to terminate the simulation for the values
of ε required to obtain good overall numerical accuracy.

The Fourier spectrum of dγ /dt in figure 5 shows the growth of higher modes. The
spectrum still fills up when a filter is applied. The calculation blows up when the
highest filtered mode, |k| = N/3, reaches the order of magnitude of the |k| = 1 mode.
For the Boussinesq case, the highest mode grows but never exceeds the magnitude of
mode |k| = 1 during the calculation. The difference between the vortex sheet evolution
equations for the Boussinesq and non-Boussinesq cases comes from the first two terms
in (2.26), which we now examine in detail. The behaviour of dγ /dt is investigated by
examining the evolution of each term in (2.26), as shown in figure 6. At t =0.1, dγ /dt

is dominated by the source term (III), i.e. buoyancy, along with the dynamic-coupled
term (I). The quadratic term (II) is small compared to the first two and negligible. As
the calculation proceeds to t = 0.2, the dynamic-coupled term dominates dγ /dt while
the source terms become less important. The quadratic term became of the same order
as the source term, and this is when the dynamics becomes more complicated. The
contour in figure 3(d) starts to deviate from its initially circular shape. The sharp drop
of vortex sheet strength profile near s = 0.83 indicates that a roll-up is beginning. In
the plots at later times t = 0.25 and 0.3, the ratio of the source term is diminished.
At this moment, the entire dynamics is dominated by the sharp spike in the γ -profile,
which is a combined contribution from the dynamic-coupled and the quadratic terms.
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FIGURE 6. Terms in (2.26). Right-hand side terms are I: dynamic-coupled term, i.e. f in
(2.27); II: quadratic term; III: buoyancy. A = 0.5 and Fr = 1. Their sum is dγ /dt.

Note that while this is happening, the matrix on the left-hand side of the linear system
(3.11) remains diagonally dominated, so that the linear system is well conditioned.

4.3. Non-Boussinesq vortex rings

We first fix the aspect ratio at S = 0.6 for the following calculation. Our aim is
to investigate how buoyancy alters the motion of the rings. Buoyancy is a result
of combining density difference and gravity, and can be measured by A/Fr2. We
examine the terms on the right-hand side of (2.32). If A is small and Fr is large,
buoyancy is negligible and dγ /dt ≈ 0, so the vortex ring retains its classic solution.
If Fr decreases such that A/Fr2 equals or greater than O(1), the buoyant vortex ring
is in the Boussinesq limit. If A increases significantly, every term in the γ -equation
becomes important and the vortex ring evolves in the non-Boussinesq regime.

The evolution of contours for cases with Atwood numbers, A = 0.3, 0.5, 0.7, is
shown in figure 7. In each case, we observe that contours were deformed from their
initially circular shape. The lower half of the contour bent inward and the ambient
fluid squeezed into the vortical core from below. Similar behaviour was obtained in
Lundgren & Mansour (1991) for a spherical vortex bubble. As the contour for A =
0.3 and 0.5 evolves, two counter-rotating roll ups develop. These are due to the dot
product of local tangent and gravity, i.e. t · ẑ, in the buoyancy term. The dot product
is negative when the local tangent of the contour points down and positive when
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FIGURE 7. Evolution of contour with different Atwood numbers A = 0.3, 0.5, 0.7, from
left to right. Other parameters are kept constant: S = 0.6, Fr = 0.3 and We = ∞.

it points up. As a result, the source term has different signs on the left and right
halves of the contour. Once the vortex sheet is created by the baroclinic torque, it
rotates in opposite directions. In the A = 0.3 and 0.5 cases, a mushroom-like structure
can be seen when the contour evolves for a longer time. We did not include surface
tension in the calculations here, but we anticipate that surface tension will suppress the
development of roll-up. The mushroom structure did not appear for the A = 0.7 case,
where the calculation stopped earlier than the former two cases, before any roll-up
would have appeared. Since roll-up did not happen, the failure of the calculation does
not seem to be related to the curvature singularities we discussed above. We looked
into the vortex sheet strength profile for A = 0.7 by plotting γ along the contour. We
found that, as the vortex sheet strength evolved, a shock-like discontinuity developed
in its profile, as shown in figure 8. This originates from the quadratic term in the
vortex sheet equation. For large enough Atwood number, the evolution equation for γ
resembles the inviscid Burgers equation, which is known to allow shocks. The whole
calculation then broke down once the discontinuity appeared in γ and subsequently
spread to other numerical quantities.

Calculations were carried out in a wider parameter space for A and Fr, as shown
in figure 9. The dotted curves are lines of constant A/Fr2 that represent the strength
of buoyancy. The Weber number is infinite. The contours are shown at the moment
when the magnitude of highest filtered mode |k| = N/3 is of the same order as the
magnitude of mode |k| = 1 so that failure of the calculations is imminent. The bottom
left corner is where A and Fr are both small, and hence it is the Boussinesq limit.
The cases with A = 1 on the right have a more limited calculation time, since the
nonlinear term ∂γ 2/∂ξ becomes important and leads to a shock-like discontinuity in
γ , as discussed above. On the top of the chart, the computations are also very limited.
In this regime, the vortex sheet equation is dominated by the dynamic-coupled and the
quadratic terms while buoyancy is weak. Our numerical scheme is not very stable in
this regime. In general, contours on the bottom-left portion of the domain are more
manageable for numerical calculation.

The aspect ratio of the ring S was then varied from 0.6 to 0.2, 0.1 and 0.05. As
shown in figure 10, the contour is still bending inward from its bottom, but its inner
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FIGURE 8. Vortex sheet strength γ evolving into a shock-like profile. A = 0.7, Fr = 0.3
and We = ∞.
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FIGURE 9. Contour at the time indicated in each inset for a range of (A,Fr). The dotted
curves have constant A/Fr2 values of 0.01, 0.1, 1, 10, 100; S = 0.6 and We = ∞ are kept
constant.

half (closer to the axis of symmetry) is lifted up compared to the S = 0.6 case. The
mushroom-like structure is not observed during the calculation. Calculations stopped
because a shock-like profile of γ formed. When the aspect ratio dropped to 0.05, the
dynamic became different from those with larger S. The contour maintained its near-
circular shape until t = 0.4, then it started to deform into an elliptic shape. Then it
paused its upward motion and stayed near (1.08, 0.11) during t =0.4–0.5. From t =0.7
it resumed its upward motion, and a small tip appeared on the top of the contour
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FIGURE 10. Evolution of contour with aspect ratio S = 0.2, 0.1, 0.05. Other parameters
are kept constant: A = 0.3, Fr = 0.3 and We = ∞.

before the calculation failed. In figure 11, we plot the centroid (defined in § 4.4) for
S = 0.05. Initially, Zc increases linearly and then is nearly constant around t = 0.4–0.5,
before increasing again. Before the contour deviated from its circular shape, the initial
vertical velocity can be estimated using the thin ring model from Chang & Llewellyn
Smith (2018),

∂Zc

∂t
= Γ

4πR

(
ln

8

S
− 1

2
+ 1

4

ρ2

ρ1

)
,

where Γ is the circulation and the expansion rate of the ring can be estimated by

∂Rc

∂t
=
(

1 − ρ2

ρ1

)
πa2g

Γ
,

which are plotted by dashed lines in figure 11 for S = 0.05. Then Rc expanded
rapidly before t = 0.4, then diminished a little before resuming its expansion. While
the current calculations eventually fail, for a thin ring Pedley (1968) has shown that
the radius of a buoyant ring increases as

√
t when t → ∞.

The vertical acceleration can be calculated by differentiating ∂Zc/∂t,

∂2Zc

∂t2
= − Γ

4πR2

(
ln

8

S
− 1

2
+ 1

4

ρ2

ρ1

)
∂R

∂t
− Γ

4πR

1

S

∂S

∂t
,

= a2g

4R2

(
1 − ρ2

ρ1

)(
− ln

8

S
+ 2 − 1

4

ρ2

ρ1

)
, (4.1)

where the continuity equation gives −2S−1∂S/∂t = 3R−1∂R/∂t. Scaling (4.1) by
U2

c/a0, the acceleration of a thin ring due to buoyancy is

(
1 − ρ2

ρ1

)
S2

4Fr2

(
− ln

8

S
+ 2 − 1

4

ρ2

ρ1

)
.
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FIGURE 11. Evolution of the centroid for the case with aspect ratio S = 0.05 shown in
figure 10. Dashed lines are estimations using thin ring model.

4.4. Centroid and circulation

We now present some quantitative results of contour evolution. Two integral quantities
are used to quantify vortex motion and dynamics: the centroid and the circulation. The
centroid of the vortical core is calculated using the formula (Pozrikidis 1986),

R2
c =

∮
R3Zt · r ds

∮
RZt · r ds

, Zc =

∮
R3Z2t · r ds

2

∮
R3Zt · r ds

. (4.2a,b)

To control the strength of buoyancy, we set Fr = 0.3 and increase A from 0.3 to 1.
Figure 12 shows the evolution of the centroid (Rc, Zc). Buoyancy increases the
speed of the vortex ring in the vertical direction and expands the ring. The speed
of translation for A = 0.3 is a constant and Zc is almost linear in time. When A is
increased, the ring accelerates slightly. The slope of Zc becomes steeper in time for
A > 0.3, which indicates that a stronger buoyancy accelerates the vortex ring in the
vertical direction. The growth of Rc shown in figure 12 indicates the expansion of
the vortex ring, which increases as buoyancy strengthens.

The evolution of circulation Γ and its derivative are plotted in figure 12. The
circulation of a buoyant vortex ring has contributions from both patch and sheet, with

Γ = Γp +
∮
γ dξ, Γp =Ω

∮
R2t · z ds, (4.3a,b)

where Γp is the part from the vortex patch computed using the contour integral
given in Pozrikidis (1986). The sign is reversed because we evaluate the integral
clockwise. The circulation contributed by the vortex sheet is calculated by integrating
γ along the contour. When there is no density difference and buoyancy, circulation
is conserved according to Kelvin’s circulation theory, i.e. Γ =Γp and dΓ /dt = 0. The
material derivative of Γ can be obtained by integrating (2.32) along the contour. For
the Boussinesq case, there is only one term on the right-hand side,

dΓ

dt
= −2

A

Fr2

∮
Lt · z dξ, (4.4)
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FIGURE 12. Evolution of centroid (Rc, Zc), circulation Γ and its derivative dΓ /dt for
A = 0.3; ——, A = 0.5; – –, A = 0.7; · · · , A = 1; – - – - –. The other dimensionless numbers
are S = 0.6, Fr = 0.3, We = ∞.

and dΓ /dt is a function of the shape of the contour only. The shape is characterised

by the local tangent t and the metric L. For the non-Boussinesq case, dΓ /dt also

requires integration over the dynamic-coupled and the quadratic terms, which are

functions of γ and the dynamics of the contour. For A = 0.3, the rate of change

of the circulation is approximately zero in figure 12. For larger values of A, the

circulation decreases. This can be compared to the contours shown in figure 9. As

the contours evolve and are deformed into two lobes, the vorticity on the contour is

swept into the region between the two lobes and accumulates. The net effect is a

negative circulation contributed by the vortex sheet. With Γp kept constant, the total

circulation then drops. The circulation for A = 1 and Fr = 0.3 reached a minimum at

t = 0.145 then increases beyond its initial value.

4.5. Calculations for Ω 6 0

The results we have shown so far are for Ω> 0, for which the ring is moving upward

against gravity. Other possibilities include Ω = 0, when the vorticity inside the core

vanishes and the vortex ring is ‘hollow’, and Ω < 0, for which the vortex ring moves

downward when there is no buoyancy. We calculate both cases and compare them

to the Ω > 0 case in figure 13. For Ω > 0 and Ω < 0, we set |Ω| = 6.7392 so

that Fr = 1. The Froude number is greater than that used in figure 7, so the bulk

vorticity inside the core is more dominant here than the cases shown in figure 7 (Fr =
0.3). The contour still bent inward from the bottom, but it did not evolve into two

counter-rotating roll ups like a mushroom structure. Instead a single roll-up, located

on the inner half (closer to the axis of symmetry) and rotating counter-clockwise,
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FIGURE 13. Evolution of contour for positive, zero and negative Ω from left to right.
S = 0.6, A = 0.3, We = ∞.
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FIGURE 14. Evolution of (a) centroid: (Rc, Zc) and (b) the trajectories for Ω > 0; ——,
Ω = 0; – –, Ω < 0; – - – - –.

appeared first. The outer half (away from the axis of symmetry) moved slower and
was dragged behind the inner half. When the continuous vorticity Ω inside vanishes,
we observe a different behaviour: a roll-up rotating clockwise appears on the outer
half of the contour earlier than its counter-clockwise counterpart. This might show
that the two counter-rotating roll ups that appeared in the Fr = 0.3 case are associated
with the dominant balance between the bulk vorticity (vortex ring) and the vortex
sheet (density and gravity). When the bulk vorticity dominates, the counter-clockwise
roll-up appears, while when the vortex sheet dominates the clockwise roll-up emerges
first. The expansion of the ring radius and the vertical speed of the ring also decrease
when the continuous vorticity vanishes (figure 14).

If we reverse the direction in which the vortex ring travels by setting Ω =−6.7392,
the contour moves downward initially, as shown in figure 13. This downward
movement reversed at t ≈ 0.4 where Zc started to increase (figure 13). A clockwise
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FIGURE 15. Case Ω = 0, (a) A = 0; (b) A = 0.3; (c) Boussinesq calculation for A = 0.3.
Potential energy; ——, kinetic energy; – –, potential plus kinetic energy; · · · .

roll-up emerged and the end of calculation at t = 0.7, indicating that the vortex sheet

had grown to a stage that it became dominant in the evolution of the contour. A long

lobe close to the axis of symmetry can be seen being dragging behind as the bulk

motion of the contour moves up.

4.6. Energy conservation

The kinetic energy of the flow associated with the vortex sheet is

Ts = (ρ1 − ρ2)π

∮
ψ u · tL dξ + (ρ1 + ρ2)π

∮
ψγ

2
dξ, (4.5)

while the contribution from the vortex patch can be calculated as a contour integral,

as in (A3) of Pozrikidis (1986). The potential energy is

U = π(ρ2 − ρ1)g

∮
RZ2 ∂R

∂ξ
dξ . (4.6)

(See appendix B for detailed derivations.) In the absence of surface tension, the total

energy (kinetic plus potential) is conserved under inviscid dynamics. The volume,

which should also be constant in time, is numerically well conserved. For ρ1 = ρ2

and for the Boussinesq case shown in figure 15(a,c) respectively, this is true for

energy. In the non-Boussinesq case, the numerical conservation of total energy is

limited (see figure 15b). It is conserved well until a certain time of integration, which

decreases as A increases. For A = 0.3, shown in figure 15(b), total energy is conserved

until approximately t = 0.35, whereas it is conserved when t < 0.6 for A = 0.1 and

when t< 0.12 for A = 0.7. The numerical failure of energy conservation must be due

to the extra terms in the non-Boussinesq cases: the dynamic-coupled term (t · du/dt)

and the quadratic term (∂γ 2/∂ξ ). The numerical problem could be due to a number

of reasons including the desingularisation used in the numerical method, the growth

of γ and the possible appearance of singularities discussed in § 4.2 (see figure 6).

We also observed the Fourier spectrum filling up in figure 5: the numerical growth

of high modes is correlated with the failure of energy conservation. Further study of

the limitations of energy conservation is left as future work.
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5. Conclusions

We have presented theoretical and numerical results on the motion of a buoyant

vortex ring in the non-Boussinesq regime. We derived a vortex sheet equation in

(2.26) from the Euler equation. A set of coupled integro-differential equations, (2.3),

(2.9), (2.11) and (2.26), is used to calculate the motion of a buoyant vortex ring.

The non-dimensionalised vortex sheet equation in (2.32) contains three dimensionless

parameters: the Atwood number, A, the Froude number, Fr, and the Weber number,

We, representing different physical effects. When A and Fr are both small, the

flow is in the Boussinesq limit; the vortex sheet is dominated by the gravity term

and decoupled from the dynamics of the contour. The problem moves into the

non-Boussinesq regime when A and Fr becomes moderate to large. In this regime, the

γ equation is coupled with du/dt. The apparent emergence of curvature singularities

limits the validity in time of our numerical calculations, as discussed in § 4.2.

Our numerical results show that the contour can deform drastically when the

vortex sheet is present. Numerical results are obtained for both the Boussinesq

and non-Boussinesq cases where the Atwood and the Froude numbers are small to

moderate. Calculations for large Froude number and Atwood number close to one

have been attempted but the results are very limited. In § 4.3 we pointed out that

a shock-like discontinuity in the vortex sheet strength γ leads to numerical failure

for those cases. This does not appear to be a curvature singularity, although this

may be an artefact of the blob method, since Baker & Xie (2011) showed curvature

singularities approaching the real axis in the complex plane for A = 1. Our results

for small to moderate Atwood and Froude numbers show how the motion of vortex

rings deviate from a classic steady solution into nonlinear evolution when adding

density variations and buoyancy. The core of the vortex ring is deformed in such

a fashion that the surrounding fluid squeezes in from the bottom. In some cases,

a mushroom-like pattern develops with two counter-rotating roll ups on the contour.

Surface tension is given in our formulation, but we did not include it in the numerical

results. The numerics for surface tension requires careful treatment, so the present

work emphasised the effects of density and buoyancy. Our results give insights into

flows dominated by buoyancy and vorticity, which have implications for geophysical

and environmental fluid dynamics. Possible future work includes investigations of

the stability of these vortex rings, the effect of surface tension and an investigation

of curvature singularities in axisymmetry. These last two works would require the

development of a numerical method that is robust in the presence of surface tension

and that does not use blobs, e.g. adapting the midpoint rule used by Baker & Nachbin

(1998) to work in axisymmetric geometry.
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Appendix A. Calculation of t · du/dt

Taking the material derivative d/dt of (2.9) yields

dup,r

dt
=−Ω

R2
ur

∮
R′ cos θ ′G ds′ + Ω

R

∮ (
u′

r cos θ ′G − R′ sin θ ′ dθ
′

dt
G + R′ cos θ ′ dG

dt

)
ds′,

(A 1)

dup,z

dt
= Ω

∮ [
(u′

z − uz) cos θ ′H − (Z′ − Z) sin θ ′ dθ
′

dt
H + (Z′ − Z) cos θ ′ dH

dt

]
ds′

−Ω
∮ (

cos θ ′ dθ
′

dt
G + sin θ ′ dG

dt

)
ds′. (A 2)

The primes indicate dummy variables in the integrals and (R, Z) is the location of
Lagrangian point. The first subscript represents the contribution from the vortex patch
or vortex sheet, while the second subscript indicates the velocity components. We do
the same for (2.11) for the sheet,

dus,r

dt
= − 1

R

∮
dγ

dt

∂G

∂Z
dξ ′ + 1

R2
ur

∮
γ
∂G

∂Z
dξ ′ − 1

R

∮
γ

d

dt

(
∂G

∂Z

)
dξ ′, (A 3)

dus,z

dt
= 1

R

∮
dγ

dt

∂G

∂R
dξ ′ − 1

R2
ur

∮
γ
∂G

∂R
dξ ′ + 1

R

∮
γ

d

dt

(
∂G

∂R

)
dξ ′. (A 4)

Taking the dot product of du/dt with the tangent t = L−1(∂R/∂ξ, ∂Z/∂ξ) yields (2.27)
with

f (R, Z, γ , u)= 1

L

∂R

∂ξ

[
Ω

R

∮ (
u′

r cos θ ′G − R′ sin θ ′ dθ
′

dt
G + R′ cos θ ′ dG

dt

)
ds′

− Ω

R2
ur

∮
R′ cos θ ′G ds′ − 1

R2
ur

∮
γ
∂G

∂Z
dξ ′ − 1

R

∮
γ

d

dt

(
∂G

∂Z

)
dξ ′

]

+ 1

L

∂Z

∂ξ

{
−Ω

∮ (
cos θ ′ dθ

′

dt
G + sin θ ′ dG

dt

)
ds′

+Ω
∮ [

(u′
z − uz) cos θ ′H − (Z′ − Z) sin θ ′ dθ

′

dt
H + (Z′ − Z) cos θ ′ dH

dt

]
ds′

+ 1

R2
ur

∮
γ
∂G

∂R
dξ ′ + 1

R

∮
γ

d

dt

(
∂G

∂R

)
dξ ′

}
. (A 5)

Appendix B. Expressions for the kinetic and potential energies

Using (3.11.4) in Saffman (1992), the kinetic energy in a volume V is given by

T = 1

2
ρ

∫

V

|u|2 dV = 1

2
ρ

[∫

V

A · ω dV −
∫

S

(u × A) · n dS

]
, (B 1)

where the unit normal vector n points out from the volume V enclosed by the surface
S, and the vector potential gives u = ∇ × A. For axisymmetric flows in (r, φ, z),

ω =ωφφ̂, A = ψ

r
φ̂
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and
dV = r dr dφ dz, dS = r dφ ds,

where the surface S is a torus and s is the arclength of a contour on the rz plane.
Integrating over φ gives

T = πρ

[∫∫
ωφψ dr dz −

∮
(u × A) · nr ds

]
. (B 2)

For the setting shown in figure 1, the kinetic energies outside and inside the vortex
are

T1 = −πρ1

∮
(u1 × A) · (−n)r ds, (B 3)

and

T2 = πρ2

[∫∫
ωφψ dr dz −

∮
(u2 × A) · n r ds

]
, (B 4)

respectively. The total kinetic energy is T = T1 + T2. The double integral in T2

corresponds to the vortex patch,

Tp = πρ2

∫∫
ωφψ dr dz = πρ2Ω

∫∫
ψr dr dz, (B 5)

and can be calculated using (A3) in Pozrikidis (1986) as a contour integral. The
remaining integrals in T are related to the vortex sheet,

Ts = πρ1

∮
(u1 × A) · n r ds − πρ2

∮
(u2 × A) · nr ds. (B 6)

By using ui = uir̂ + viẑ and ds = L dξ , we obtain

(ui × A) · n = ψ

r

(
ui

∂R

∂ξ
+ vi

∂Z

∂ξ

)
1

L
= ψ

r
ui · t. (B 7)

Then, equation (B 6) becomes

Ts = πρ1

∮
ψu1 · t ds − πρ2

∮
ψu2 · t ds, (B 8)

= (ρ1 − ρ2)π

∮
ψu · t L dξ + (ρ1 + ρ2)

π

2

∮
ψγ dξ . (B 9)

If ρ1 = ρ2 = ρ,

Ts = πρ

∮
ψ(u1 − u2) · tL dξ,= πρ

∮
ψγ dξ, (B 10)

where γ = L(u1 − u2) · t. Taking ρ = 1, this is identical to (2.36) in Hattori & Moffatt
(2006). Finally, the potential energy is calculated from

U = 2π(ρ2 − ρ1)g

∫∫
rz dr dz = π(ρ2 − ρ1)g

∮
RZ2 ∂R

∂ξ
dξ . (B 11)
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